It's a classification problem-solving supervised machine learning algorithm. The estimate of the probability of a specific event occurring is the output of a logistic regression algorithm. When it comes to probability, it's always between 0 and 1.
Select Data Analysis from the Analysis category on the Data tab.
Click OK after selecting Regression.
Configure the following options in the Regression dialogue box: The Input Y Range, which is your dependent variable, should be selected.
After clicking OK, look at the Excel regression analysis output.
Note that you can use either OLS or Logistic Regression, however I'm demonstrating OLS regression. I'll walk you through the fundamental analytic procedures below by pointing and clicking. As you add dependent and independent variables to the model, Sheets will apply transformations to them. Categorical (factors) variables can also be used.
The link function is log(p/1-p). We can model a non-linear link in a linear way by using a logarithmic transformation on the outcome variable. In Logistic Regression, this is the equation that is employed. The odd ratio here is (p/1-p).
The null hypothesis that the coefficient is equal to zero is tested by the p-value for each term (no effect). A low p-value (0.05) suggests that the null hypothesis can be rejected.
Learner's Ratings
3.8
Overall Rating
54%
18%
5%
8%
15%
Reviews
V
Vaibhav Magar
5
I would suggest Absolute reference in 13:30 for the calculation of percentage
H
Hafiz Muhammad Talha
5
kindly share your slides for revision
J
jatinkumar
5
Super 👍
S
Sohel Khalid Nadaf
4
Great
M
mounika
5
How to get dataset
S
Saikiran Boddu
5
I am looking for this course in Telugu language, Is there any possibilities in Telugu.
H
Harsh Raj
5
Great
N
Nitesh kumar gupta
5
nice course all the video explained very well from scratch to advance
S
Shubham Maurice
5
Overall Lectures are good but also provide the practicing spreadsheets for students.
Share a personalized message with your friends.