Course Content

  • 4_5_Support_Vector_Machines

Course Content


The goal of the SVM algorithm is to find a hyperplane in an N-dimensional space that categorises data points clearly. The hyperplane's size is determined by the number of features. If there are only two input characteristics, the hyperplane is merely a line.

SVM is a supervised machine learning technique that can be used to solve problems like classification and regression. It transforms your data using a technique known as the kernel trick, and then calculates an ideal boundary between the available outputs based on these alterations.

Recommended Courses

Share With Friend

Have a friend to whom you would want to share this course?

Download LearnVern App

App Preview Image
App QR Code Image
Code Scan or Download the app
Google Play Store
Apple App Store
598K+ Downloads
App Download Section Circle 1
4.57 Avg. Ratings
App Download Section Circle 2
15K+ Reviews
App Download Section Circle 3
  • Learn anywhere on the go
  • Get regular updates about your enrolled or new courses
  • Share content with your friends
  • Evaluate your progress through practice tests
  • No internet connection needed
  • Enroll for the webinar and join at the time of the webinar from anywhere