Statistical sampling is a broad field, but in applied machine learning, you're more likely to employ one of three types of sample: simple random sampling, systematic sampling, or stratified sampling. Simple Random Sampling: Samples are selected from the domain with a uniform probability.
Random, systematic, convenient, cluster, and stratified sampling are the five types of sampling.
We could select a sample method based on whether we want to account for sampling bias; for this reason, random sampling is frequently recommended over non-random sampling. Simple, systematic, stratified, and cluster sampling are all examples of random sampling.
In order to execute sampling, you must first specify your population and the technique for selecting (and sometimes rejecting) observations for inclusion in your data sample. The population parameters that you want to estimate with the sample may very well specify this.
In machine learning, sampling is useful because, when done correctly, it can yield an accurate, low variance approximation of some expectation.
Learner's Ratings
4.3
Overall Rating
67%
11%
12%
5%
5%
Reviews
A
Ayush Bharti
4
how can i download the finaldata.csv?
J
Jagannath Mahato
5
Hello Kushal Sir!
Your way of teaching is very good. I thank you from my heart ❤️ that you are providing such good content for free.
M
Muhammad Qasim
5
Hi Kushal ! Your way of teaching is extremely helpful and you are one of the best teacher in the world.
Extremely helpful and I recommend to my peer as well for this course.
S
Shafi Akhtar
5
None
A
Aniket Kumar prasad
5
Very helpful and easy to understand all the concepts, best teacher for learning ML.
R
Rishu Shrivastav
5
explained everything in detail. I have a question learnvern provide dataset , and ppt ? or not?
V
VIKAS CHOUBEY
5
very nicely explained
V
Vrushali Kandesar
5
Awesome and very nicely explained!!!
One importing thing to notify to team is by mistakenly navie's practical has been added under svm lecture and vice versa (Learning Practical 1)
Share a personalized message with your friends.