Course Content

Course Content


The naïve bayes classifiers have no built-in way for assessing feature relevance. The conditional and unconditional probabilities associated with the features are determined by Nave Bayes algorithms, which then forecast the class with the highest probability.

The Bayes Theorem is used to create a Naive Bayes classifier. It calculates membership probabilities for each class, such as the likelihood that a certain record or data point belongs to that class. The most likely class is defined as the one having the highest probability.

Recommended Courses

Share With Friend

Have a friend to whom you would want to share this course?

Download LearnVern App

App Preview Image
App QR Code Image
Code Scan or Download the app
Google Play Store
Apple App Store
598K+ Downloads
App Download Section Circle 1
4.57 Avg. Ratings
App Download Section Circle 2
15K+ Reviews
App Download Section Circle 3
  • Learn anywhere on the go
  • Get regular updates about your enrolled or new courses
  • Share content with your friends
  • Evaluate your progress through practice tests
  • No internet connection needed
  • Enroll for the webinar and join at the time of the webinar from anywhere