The Naive Bayes Classifier is a basic and effective classification method that aids in the development of fast machine learning models capable of making quick predictions. It's a probabilistic classifier, which means it makes predictions based on an object's probability.
Although intractable, the conditional probability can be determined using the joint probability. The Bayes Theorem establishes a consistent method for estimating conditional probability. The computation for Bayes Theorem in its simplest version is as follows: P(A|B) = P(B|A) * P(A) / P(A) / P(A) / P(A) / P(A) / P(A) (B)
Learner's Ratings
4.4
Overall Rating
69%
10%
12%
4%
5%
Reviews
H
Haseen Ur Rahman
5
Very helping Platform for learning different skills.
D
DEEPAK PALI
5
BEST PLATFORM FOR LEARNING
S
Suresh Kumar
5
Hi Sir,
I want a clearity up on these
1. To learn Data Science "Machine learning" is part of it but we have to learn additionally python libraries (panda, numpy, matplotlib) or else in ML enough.
A
Ayush Bharti
4
how can i download the finaldata.csv?
J
Jagannath Mahato
5
Hello Kushal Sir!
Your way of teaching is very good. I thank you from my heart ❤️ that you are providing such good content for free.
M
Muhammad Qasim
5
Hi Kushal ! Your way of teaching is extremely helpful and you are one of the best teacher in the world.
Extremely helpful and I recommend to my peer as well for this course.
S
Shafi Akhtar
5
None
A
Aniket Kumar prasad
5
Very helpful and easy to understand all the concepts, best teacher for learning ML.
R
Rishu Shrivastav
5
explained everything in detail. I have a question learnvern provide dataset , and ppt ? or not?
Share a personalized message with your friends.