Course Content

Course Content

FAQs

MLR/multiple regression is a statistical technique that uses multiple linear regression. It can predict the outcome of one variable using numerous factors. Multiple regression attempts to model the linear relationship between independent and dependent variables.

Multivariable regression models are used to determine the relationship between a dependent variable (i.e., a desired outcome) and multiple independent variables.

Several regression is a type of linear regression that allows for the prediction of systems with multiple variables. This is accomplished by simply adding extra terms to the linear regression equation, each term indicating the influence of a distinct physical parameter.

By determining the slope and intercept that define the line and minimising regression errors, linear regression aims to build a line that comes closest to the data. A multiple linear regression is when two or more explanatory factors have a linear relationship with the dependent variable.

Researchers can use multiple regression analysis to evaluate the strength of the relationship between an outcome (the dependent variable) and several predictor variables, as well as the importance of each predictor to the relationship, often with the effect of other predictors statistically eliminated.

Recommended Courses

Share With Friend

Have a friend to whom you would want to share this course?

Download LearnVern App

App Preview Image
App QR Code Image
Code Scan or Download the app
Google Play Store
Apple App Store
598K+ Downloads
App Download Section Circle 1
4.57 Avg. Ratings
App Download Section Circle 2
15K+ Reviews
App Download Section Circle 3
  • Learn anywhere on the go
  • Get regular updates about your enrolled or new courses
  • Share content with your friends
  • Evaluate your progress through practice tests
  • No internet connection needed
  • Enroll for the webinar and join at the time of the webinar from anywhere