The act of partitioning available data into two pieces, commonly for cross-validation purposes, is known as data splitting. A portion of the information is used to create a predictive model. one to assess the model's performance, and the other to assess the model's performance
The major goal of dividing the dataset into a validation set is to avoid overfitting, which occurs when a model gets extremely good at categorising samples in the training set but is unable to generalise and make accurate classifications on data it has never seen before.
To detect the behaviour of a machine learning model, we must use observations that were not used during the training phase. The model's judgement would be influenced otherwise.
Learner's Ratings
4.4
Overall Rating
70%
10%
12%
5%
3%
Reviews
S
Shafi Akhtar
5
None
A
Aniket Kumar prasad
5
Very helpful and easy to understand all the concepts, best teacher for learning ML.
R
Rishu Shrivastav
5
explained everything in detail. I have a question learnvern provide dataset , and ppt ? or not?
V
VIKAS CHOUBEY
5
very nicely explained
V
Vrushali Kandesar
5
Awesome and very nicely explained!!!
One importing thing to notify to team is by mistakenly navie's practical has been added under svm lecture and vice versa (Learning Practical 1)
M
Mohd Mushraf
5
Amazing Teaching
J
Juboraj Juboraj
5
Easy to understand & explain details.
J
Joydeb
5
Awesome Course sir and your teaching style is very GOOD.
S
Shaga Chandrakanth Goud
5
Hi Kushal ji, Thanks a lot for a very good explanation. I have doubts about where we can get the dataset that you explained in the video. Can you make it available in resource ,so that we can downld
N
Neel Khairnar
5
Kushal is very good explainer he is covering all topics nicely 👍
Share a personalized message with your friends.