The most basic and likely most typical approach for splitting such a dataset is to randomly sample a portion of it. For example, 80 percent of the dataset's rows may be randomly selected for training, while the remaining 20% could be used for testing.
Splitting a dataset can also help you figure out if your model is suffering from underfitting or overfitting, two extremely prevalent difficulties. Underfitting occurs when a model is unable to contain the relationships between variables.
Learner's Ratings
4.4
Overall Rating
70%
10%
13%
5%
2%
Reviews
J
Jagannath Mahato
5
Hello Kushal Sir!
Your way of teaching is very good. I thank you from my heart ❤️ that you are providing such good content for free.
M
Muhammad Qasim
5
Hi Kushal ! Your way of teaching is extremely helpful and you are one of the best teacher in the world.
Extremely helpful and I recommend to my peer as well for this course.
S
Shafi Akhtar
5
None
A
Aniket Kumar prasad
5
Very helpful and easy to understand all the concepts, best teacher for learning ML.
R
Rishu Shrivastav
5
explained everything in detail. I have a question learnvern provide dataset , and ppt ? or not?
V
VIKAS CHOUBEY
5
very nicely explained
V
Vrushali Kandesar
5
Awesome and very nicely explained!!!
One importing thing to notify to team is by mistakenly navie's practical has been added under svm lecture and vice versa (Learning Practical 1)
M
Mohd Mushraf
5
Amazing Teaching
J
Juboraj Juboraj
5
Easy to understand & explain details.
J
Joydeb
5
Awesome Course sir and your teaching style is very GOOD.
Share a personalized message with your friends.