Machine learning models are created using linear discriminant analysis, a supervised classification method. These dimensionality reduction methods are employed in a variety of applications, including marketing predictive analysis and picture identification.
Before classification, linear discriminant analysis is performed to reduce the number of features to a more manageable quantity. Each of the additional dimensions is a template made up of a linear combination of pixel values.
The goal of LDA is to use a linear discriminant function to maximise between-class variance and reduce within-class variance under the assumption that data in each class is characterised by a Gaussian probability density function with the same covariance.
Learner's Ratings
4.4
Overall Rating
70%
10%
13%
5%
2%
Reviews
J
Jagannath Mahato
5
Hello Kushal Sir!
Your way of teaching is very good. I thank you from my heart ❤️ that you are providing such good content for free.
M
Muhammad Qasim
5
Hi Kushal ! Your way of teaching is extremely helpful and you are one of the best teacher in the world.
Extremely helpful and I recommend to my peer as well for this course.
S
Shafi Akhtar
5
None
A
Aniket Kumar prasad
5
Very helpful and easy to understand all the concepts, best teacher for learning ML.
R
Rishu Shrivastav
5
explained everything in detail. I have a question learnvern provide dataset , and ppt ? or not?
V
VIKAS CHOUBEY
5
very nicely explained
V
Vrushali Kandesar
5
Awesome and very nicely explained!!!
One importing thing to notify to team is by mistakenly navie's practical has been added under svm lecture and vice versa (Learning Practical 1)
M
Mohd Mushraf
5
Amazing Teaching
J
Juboraj Juboraj
5
Easy to understand & explain details.
J
Joydeb
5
Awesome Course sir and your teaching style is very GOOD.
Share a personalized message with your friends.