Data with a Normal Distribution is useful for model construction in Machine Learning. It simplifies math. Models like LDA, Gaussian Naive Bayes, Logistic Regression, Linear Regression, etc., are explicitly calculated from the assumption that the distribution is a bivariate or multivariate normal.
Probability distributions are classified in a variety of ways. The normal distribution, chi square distribution, binomial distribution, and Poisson distribution are a few examples. The various probability distributions serve distinct functions and represent distinct data creation processes.
This bell-shaped curve is known as the Normal Distribution. Because Carl Friedrich Gauss discovered it, we sometimes refer to it as a Gaussian Distribution. We may reduce the Normal Distribution's Probability Density to two parameters: ๐ป Mean and ๐2. This curve is symmetric around the Mean.
Learner's Ratings
4.6
Overall Rating
63%
37%
0%
0%
0%
Reviews
R
Rohit Khare
4
What will be the mandatory requirement of configuration of PC for this ML tool
M
Muhammad Fahad Bashir
5
Explained the concept easily
P
Pradeep Kumar Kaushik
5
Please give me iris,csv file.
A
Ankit Malik
4
where is the finaldata.csv
V
Vimal Bhatt
5
great learning plateform kushal sir is really too good
Share a personalized message with your friends.