Course Content

Course Content


Evaluation of the rain-Test Split The train-test split is a technique for assessing a machine learning algorithm's performance. It can be used for any supervised learning technique and can be utilized for classification or regression tasks. The process involves partitioning a dataset into two subsets.

The key purpose behind separating the dataset into a validation set is to prevent our model from overfitting, which occurs when the model gets extremely good at identifying samples in the training set but is unable to generalize and make accurate classifications on data it has never seen before.

The benefits of splitting data in machine learning is that it helps with making more accurate predictions. It also helps with reducing the time needed for training a model as well as speeding up the process of tuning a model’s hyperparameters.

Recommended Courses

Share With Friend

Have a friend to whom you would want to share this course?

Download LearnVern App

App Preview Image
App QR Code Image
Code Scan or Download the app
Google Play Store
Apple App Store
598K+ Downloads
App Download Section Circle 1
4.57 Avg. Ratings
App Download Section Circle 2
15K+ Reviews
App Download Section Circle 3
  • Learn anywhere on the go
  • Get regular updates about your enrolled or new courses
  • Share content with your friends
  • Evaluate your progress through practice tests
  • No internet connection needed
  • Enroll for the webinar and join at the time of the webinar from anywhere