The observed responses are subtracted from the projected responses to yield residuals, which are estimates of experimental error. After all of the unknown model parameters have been determined from the experimental data, the anticipated response is calculated using the chosen model.
The 'delta' between the actual target value and the fitted value is the residual in machine learning. In regression issues, residual is a significant notion. It is the foundation of all regression metrics, including mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
Learner's Ratings
4.5
Overall Rating
73%
15%
6%
4%
2%
Reviews
N
Nishant Saxena
5
great content
A
Aditya Purohit
5
Very good course & amazing cocepts & detailed explaination of each and every thing .
Thanku soo much Learn Vern ...
A
Abinash prusty
5
Good
S
Shivendra Shahi
5
Amazing
A
Ashmit Raj
5
Very good course for begineers.
N
NAGASWETHA
5
good explanation
B
Bharkha Bhambhani
4
excellent
U
Umesh Kumar Pandey
5
nice
L
Luckyrani Sahu
5
best
R
Ragini Reddy
5
can explain more about level of management would help of more understanding
Share a personalized message with your friends.